Facile solution-phase synthesis of γ-Mn3O4 hierarchical structures

نویسندگان

  • Zhengcui Wu
  • Kuai Yu
  • Yaobin Huang
  • Cheng Pan
  • Yi Xie
چکیده

BACKGROUND A lot of effort has been focused on the integration of nanorods/nanowire as building blocks into three-dimensional (3D) complex superstructures. But, the development of simple and effective methods for creating novel assemblies of self-supported patterns of hierarchical architectures to designed materials using a suitable chemical method is important to technology and remains an attractive, but elusive goal. RESULTS The hierarchical structure of Mn3O4 with radiated spherulitic nanorods was prepared via a simple solution-based coordinated route in the presence of macrocycle polyamine, hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene (CT) with the assistance of thiourea as an additive. CONCLUSION This approach opens a new and facile route for the morphogenesis of Mn3O4 material and it might be extended as a novel synthetic method for the synthesis of other inorganic semiconducting nanomaterials such as metal chalcogenide semiconductors with novel morphology and complex form, since it has been shown that thiourea can be used as an effective additive and the number of such water-soluble macrocyclic polyamines also makes it possible to provide various kinds of ligands for different metals in homogeneous water system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies on Thermal Decomposition of Aluminium Sulfate to Produce Alumina Nano Structure

Aluminum sulfate nano structures have been prepared by solution combustion synthesis using aluminum nitrate nonahydrate (Al(NO3)3.9H2O) and ammonium sulfate ((NH4)2SO4). The resultant aluminum sulfate nano structures were calcined at different temperatures to study thermal  decomposition of aluminum sulfate. The crystallinity and phase of  the as-synthesized and calcined samples were char...

متن کامل

One-dimensional single-crystalline Mn3O4 nanostructures with tunable length and magnetic properties of Mn3O4 nanowires.

A facile, solution-phase route to mass fabrication of one-dimensional single crystalline Mn(3)O(4) nanowires with a unique core/sheath heteronanostructure, controlled aspect ratios, and narrow diameter distribution was reported. The single crystalline Mn(3)O(4) nanowires have considerably large coercivities (H(C) > 1 T) at low temperatures.

متن کامل

Synthesis of Mn3O4-Based Aerogels and Their Lithium-Storage Abilities

Mn3O4 aerogels and their graphene nanosheet (GN) composite aerogels were synthesized by a simple supercritical-ethanol process. In the process, supercritical ethanol acted as a reductant to reduce graphene oxide and MnO2 gels simultaneously. The synthesized aerogels consisted of 10-20 nm Mn3O4 nanocrystallites, with BET-specific surface areas around 60 m(2)/g. The performance of the aerogels as...

متن کامل

Synthesis and characterization of nanowires Hausmannite (Mn3O4) by solid-state thermal decomposition

In this study, we synthesis one-dimensional (1D) manganese(III) Schiff base coordination polymer [Mn(Brsalophen)(μ1,3-N3)]n by reaction of MnCl2·6H2O and tetradentate Schiff base ligand Brsalophen at the presence of NaN3 in methanol and characterized by elemental analyses (CHN) and FT-IR spectroscopy. It was used as a new precurs...

متن کامل

A Facile and Template-Free Hydrothermal Synthesis of Mn3O4 Nanorods on Graphene Sheets for Supercapacitor Electrodes with Long Cycle Stability

Graphene/Mn3O4 composites were prepared by a simple hydrothermal process from KMnO4 using ethylene glycol as a reducing agent. Mn3O4 nanorods of 100 nm to 1 μm length were observed to be well-dispersed on graphene sheets. To assess the properties of these materials for use in supercapacitors, cyclic voltammetry and galvanostatic charging− discharging measurements were performed. Graphene/Mn3O4 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemistry Central Journal

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2007